organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3,3'-(Ethane-1,2-diyl)bis(2-thioxo-1,3oxazolidin-4-one)

Chunhua Ge,* Ya'nan Guo, Xiangdong Zhang, Xiaoyan Zhang and Qitao Liu

College of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China

Correspondence e-mail: chhge@lnu.edu.cn

Received 6 November 2007; accepted 8 November 2007

Key indicators: single-crystal X-ray study: T = 293 K: mean σ (C–C) = 0.005 Å: R factor = 0.043; wR factor = 0.127; data-to-parameter ratio = 13.9.

The asymmetric unit of the title compound, $C_8H_8N_2O_4S_2$, contains one half of a centrosymmetric molecule. A short $C \cdot \cdot O$ distance of 3.012 (4) Å between the carbonyl groups of neighbouring molecules indicates the presence of dipoledipole interactions. The crystal packing exhibits also weak intermolecular $O \cdots S$ [3.239 (3) Å] and $C - H \cdots O$ interactions.

Related literature

For general background, see: Gupta et al. (1981); Cutshall et al. (2005). For details of the synthesis, see: Doğan et al. (1992);

Experimental

Crystal data $C_8H_8N_2O_4S_2$ $M_{\rm m} = 260.28$ Monoclinic, $P2_1/c$

a = 6.2845 (12) Åb = 12.3252 (19) Å c = 7.080 (2) Å $\beta = 105.22 \ (2)^{\circ}$

```
V = 529.2 (2) Å<sup>3</sup>
Z = 2
Mo K\alpha radiation
\mu = 0.50 \text{ mm}^{-1}
T = 293 (2) K
0.20 \times 0.15 \times 0.11 \ \mathrm{mm}
```

Data collection

Bruker SMART CCD area-detector	1390 measured reflections
diffractometer	1012 independent reflections
Absorption correction: multi-scan	761 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2001)	$R_{\rm int} = 0.028$
$T_{\min} = 0.908, \ T_{\max} = 0.955$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	73 parameters
$wR(F^2) = 0.127$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$
1012 reflections	$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

Table 1

Hy	drogen-bond	geometry ((À, °`)
~	0	0 2	· · ·	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C3-H3A\cdots O2^{i}$	0.97	2.56	3.215 (4)	125
$C3-H3B\cdots O2^{ii}$	0.97	2.57	3.325 (4)	135

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) x, $-y + \frac{1}{2}$, $z - \frac{1}{2}$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

This project is supported by the Natural Science Foundation of the Education Bureau of Liaoning Province (grant No. 05 L159).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2350).

References

Bruker (2001). SMART (Version 5.624), SAINT (Version 6.04) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.

- Cutshall, N. S., O'Day, C. & Prezhdo, M. (2005). Bioorg. Med. Chem. Lett. 15, 3374-3379.
- Doğan, Í., Burgemeister, T., Íçlic, S. & Mannschreck, A. (1992). Tetrahedron, 48, 7157-7164.
- Gupta, R. K., Salzberg, B. M., Grinvald, A., Cohen, L. B., Kamino, K., Lesher, S., Boyle, M. B., Waggoner, A. S. & Wang, C. H. (1981). J. Membr. Biol. 58, 123-137
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

supplementary materials

Acta Cryst. (2008). E64, o506 [doi:10.1107/S1600536807057157]

3,3'-(Ethane-1,2-diyl)bis(2-thioxo-1,3-oxazolidin-4-one)

C. Ge, Y. Guo, X. Zhang, X. Zhang and Q. Liu

Comment

The research on *N*-substitution 2-thioxooxazolidin-4-one compounds have been mushroomed for their interesting biological and spectral properties (Cutshall *et al.*, 2005; Gupta *et al.*, 1981).

The title compound is composed of two functional groups of 2-thioxooxazolidin-4-one which are bridged by ethane group (Fig.1). In the crystal, C1—C4, O1—O2, N1 and S1 atoms are almost coplanar with a highest deviation of 0.0440 Å for O2. As a derivative of ethane, the molecule has a perfect *anti*-linear conformation. Dihedral angle of N1—C1—C1A—N1A is $-180.00 (19)^\circ$. The crystal packing exhibits weak intermolecular C—H…O hydrogen bonds (Table 1), O…S interaction (S1…O2ⁱⁱⁱ 3.239 (3) Å [symmetry code: (iii) -1 + x, y, -1 + z]), and strong dipole-dipole interactions proved by short C…O distance of 3.012 (4) Å between the carbonyl groups of neighbouring molecules.

Experimental

The title compound was prepared according to the method of Doğan *et al.* (1992). Colourless block-shape crystal of (I) suitable for X-ray diffraction was obtained from ethanol/water (V: V = 4: 1).

Refinement

H atoms were found in difference map, placed in idealized positions (C—H 0.97 Å) and refined as riding, with $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level and atomix numbering [symmetry code: (A) 1 - x, 1 - y, 1 - z].

3,3'-(Ethane-1,2-diyl)bis(2-thioxo-1,3-oxazolidin-4-one)

Crystal data	
$C_8H_8N_2O_4S_2$	$F_{000} = 268$
$M_r = 260.28$	$D_{\rm x} = 1.634 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 554 reflections
<i>a</i> = 6.2845 (12) Å	$\theta = 2.7 - 22.1^{\circ}$

<i>b</i> = 12.3252 (19) Å
c = 7.080 (2) Å
$\beta = 105.22 \ (2)^{\circ}$
$V = 529.2 (2) \text{ Å}^3$
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer	1012 independent reflections
Radiation source: fine-focus sealed tube	761 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.028$
T = 293(2) K	$\theta_{\text{max}} = 26.0^{\circ}$
phi and ω scans	$\theta_{\min} = 3.3^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2001)	$h = -7 \rightarrow 7$
$T_{\min} = 0.908, T_{\max} = 0.955$	$k = -15 \rightarrow 1$
1390 measured reflections	$l = -8 \rightarrow 1$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.043$	H-atom parameters constrained
$wR(F^2) = 0.127$	$w = 1/[\sigma^2(F_o^2) + (0.0798P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} < 0.001$
1012 reflections	$\Delta \rho_{max} = 0.27 \text{ e } \text{\AA}^{-3}$
73 parameters	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	

 $\mu = 0.50 \text{ mm}^{-1}$ T = 293 (2) KBlock, colourless $0.20 \times 0.15 \times 0.11 \text{ mm}$

methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

y

x

Ζ

 $U_{\rm iso}*/U_{\rm eq}$

S1	0.33868 (11)	0.36411 (6)	0.00385 (12)	0.0506 (3)
01	0.7149 (3)	0.33522 (16)	0.0792 (3)	0.0486 (6)
C2	0.5626 (4)	0.36727 (18)	0.1543 (4)	0.0373 (6)
N1	0.6306 (3)	0.40084 (16)	0.3674 (3)	0.0350 (5)
C1	0.5096 (4)	0.4388 (2)	0.5081 (4)	0.0389 (6)
H1A	0.5884	0.4182	0.6401	0.047*
H1B	0.3641	0.4063	0.4781	0.047*
O2	0.9269 (3)	0.40856 (17)	0.6269 (4)	0.0600 (7)
C4	0.8323 (4)	0.3902 (2)	0.4422 (5)	0.0442 (7)
C3	0.8954 (4)	0.3505 (3)	0.2477 (6)	0.0605 (9)
H3A	0.9950	0.4034	0.2159	0.073*
H3B	0.9752	0.2826	0.2764	0.073*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0373 (4)	0.0552 (5)	0.0535 (5)	-0.0042 (3)	0.0018 (3)	-0.0021 (3)
O1	0.0338 (10)	0.0488 (11)	0.0634 (13)	0.0019 (8)	0.0132 (9)	-0.0174 (10)
C2	0.0359 (13)	0.0282 (12)	0.0484 (16)	-0.0001 (10)	0.0118 (12)	0.0005 (11)
N1	0.0300 (10)	0.0300 (10)	0.0440 (14)	0.0011 (8)	0.0077 (9)	-0.0010 (9)
C1	0.0397 (13)	0.0354 (13)	0.0432 (15)	0.0007 (11)	0.0137 (11)	-0.0002 (12)
O2	0.0412 (11)	0.0528 (12)	0.0730 (16)	-0.0003 (9)	-0.0083 (10)	-0.0046 (11)
C4	0.0337 (13)	0.0307 (13)	0.0613 (19)	0.0023 (10)	0.0000 (13)	-0.0036 (12)
C3	0.0315 (14)	0.0564 (18)	0.090 (3)	0.0008 (12)	0.0094 (15)	-0.0195 (18)

Geometric parameters (Å, °)

S1—C2	1.526 (3)	C1—H1A	0.9700
O1—C2	1.274 (3)	C1—H1B	0.9700
O1—C3	1.427 (4)	O2—C4	1.307 (4)
C2—N1	1.514 (4)	C4—C3	1.606 (5)
N1—C4	1.246 (3)	С3—НЗА	0.9700
N1—C1	1.479 (3)	С3—Н3В	0.9700
C1—C1 ⁱ	1.514 (5)		
C2—O1—C3	97.4 (2)	C1 ⁱ —C1—H1B	110.1
O1—C2—N1	117.0 (2)	H1A—C1—H1B	108.4
O1—C2—S1	110.9 (2)	N1—C4—O2	123.5 (3)
N1—C2—S1	132.0 (2)	N1—C4—C3	96.9 (3)
C4—N1—C1	113.1 (2)	O2—C4—C3	139.6 (3)
C4—N1—C2	112.6 (2)	O1—C3—C4	115.9 (2)
C1—N1—C2	134.2 (2)	O1—C3—H3A	108.3
N1-C1-C1 ⁱ	108.0 (3)	C4—C3—H3A	108.3
N1—C1—H1A	110.1	O1—C3—H3B	108.3
C1 ⁱ —C1—H1A	110.1	C4—C3—H3B	108.3
N1—C1—H1B	110.1	НЗА—СЗ—НЗВ	107.4
Symmetry codes: (i) $-x+1, -y+1, -z+1$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A		
C3—H3A···O2 ⁱⁱ	0.97	2.56	3.215 (4)	125		
C3—H3B····O2 ⁱⁱⁱ	0.97	2.57	3.325 (4)	135		
Symmetry codes: (ii) $-x+2$, $-y+1$, $-z+1$; (iii) x , $-y+1/2$, $z-1/2$.						

Fig. 1